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Cluster~variation method for the triangular lattice gas 
II. Triangle approximation 

R. Osorio and L.M. Falicov 

Materials and Molecular Research Division, Lawrence 
Berkeley Laboratory and Department of Physics, University 
of California, Berkeley, California 94720 

A triangular lattice gas with nearest~neighbor 

repulsions and three~particle attractions is examined 

in a three~sublattice triangle approximation as a 

model for lithium intercalation in the transition 

metals dichalcogenides. Order~disorder phase diagrams 

and thermodynamic functions are computed. Peaks in 

the incremental capacity as function of concentration 

in the experimental data of Thompson are reproduced in 

our model. 

This manuscript was printed from originals provided by the authors. 



l. INTRODUCTION 

In preceding\}' p (hereafter referred to as I) 

triangular latt was investigated by a three 

sublattice Bragg~Williams method as a model for problem 

of lithium ordering in intercalated transition~metal dichal~ 

cog s like TiS 2 • The calculation of I illustrated 

qualitatively the origin of minima and maxima of the consiant-

temperature incremental capacity as a function of the concentra~ 

tion ~in systems like LixTiS 2 • In this paper a better 

approximation is used: it include~ nearest-neighbcir correlations 

between sites ln a triangle cluster-variation calculation. 

The cluster variation method has been developed by 

Kikuchi~as a hierarchy of self-consistent approximations 

forthe combinational factors in the entropy of a lattice. 

The description of correlations between lattice sites is 

limited by the size of the chosen basic cluster, while long-

range order can be introduced by diyiding the lattice into 

a number of sublattices consistent with the ground state. 

For the triangular lattice with three sublat ces and 

nearest-neighbor repulsion only, the point approximation was 

examined in I. The pair approximation is equivalent to 

Bethe-Peierls method and has been applied to the triangular 

lattice with repulsive nearest-neighbor and attractive 

second-nearest-neighbor interactions by Campbell and Schick\1. 

Because of its "one-dimensional" characteristics, however, 

this model ads to paradoxical results, like lve es 



close to the concentration x = l/2 at low temperatures. 

Another failure, apparent in all closed-packed lattices, is 

that the Bethe~Peierls method gives wrong results for the 

energy at zero temperature: the probability of existence 

of nearest~neighbor pairs of particles is zero for~~ l/2, 

while, as discussed 1n I, the correct result is finite for 

x > l/3. We therefore choose not to apply the pair approxima-

tion to the present problem. 

We define as our basic cluster a closed triangle contain~ 

ing nearest-neighbor points belonging to the three 'different 

sublattices defined in I. This approximation was first used 

by Burley\( to study antiferromagnetic behavior in an Ising 

model, which has been proved by Yang and Lee~to be equiv

alent to our lattice gas problem. While Burley assumed the 

distribution of spins on two of the sublattices to be equal, 

we give here a more general solution, including the possibility 

of three different site occupancies? Furthermore, we incor-

porate interactions between three particles in the model. 

This is necessary to remove the artificial symmetry about 

x = 0.5 found in the phase diagram of I. We thus have here 

two adjustable parameters, namely the temperature and the 

three-body potential. 

Our cluster-variation calculation is presented in Section 2 

and the Appendix. The resulting phase diagrams are shown in 

Section 3, while the behavior of the entropy and the incre-

mental capacity is the subject of Section 4. The results 

are discussed further and conc~usions presented in Section 5. 



2, THE CLUSTER~VARIATION CALCULATION 

To each lattice site we associate a number i such that 

l = 0 if the s e is empty and i = 1 if the site is occupied. 

Accordingly, we define the point probabilities x~ for the i 
l 

state of a point in the sublattice v (v = a, 8 or y), In the 

v notation of I, X· = 
l 

The probability for an i i bond 

(where !,i = 0 or 1) between nearest-nei~hhor sites on the 

sublattices v and v' is denoted by y~~~ ,_ Finally the proba
lJ 

bility for an l - i - k configuration on an equilateral 

nearest-neighbor ~iangle containing points on the ~ublattices 

a, S and y, in this order, is denoted by zijk" The following 

re ions hold between the configuration probabilities for the 

aS 
Y·. 
l] 

C( 
X· 

l 

ferent clusters: 

= Iz, 'k k l] 

I z. 'k ::; 

jk l] 

L zl.J'k = 1 
ijk 

Sa = Iz. "k Yjk 0 l] 
l 

X~ = L z,k 
J ik ]_] 

(2.la) 

ya 
yki = ~Zijk (2.lb) 

J 

xY I = 2 ijk (2.lc) k ij . 

We assume the Darticles to interact through a nearest~ 

neighbor repulsion ~ (as in I) and we add the value ~¢ for 

each closed nearest-neighbor triangle of particles. We take 

¢ to be negative to simulate the decreasing degree of ionization 

of the Li atoms in Li TiS 2 as x increases. Nuclear-magnetic~ 
X -

resonance data y suggest that, while the ionization is essen-



tially complete at small ~' 10 to 20% of an electron remains 

in the neighborhood of a Li atom at x = 1. Simple electro~ 

static arguments then suggest that ~ takes values between 

(~0.3) and (-0.55). The energy of the lattice gas with N 

sites is written as 

( 2 • 2 ) 

Ground-state structures are found by minimizing this energy 

with respect to the variables {zijk}, subject to the constraint 

of Eq. (2.la) and an additional relation obtained from a well-

determined concentration: 

( 2 • 3 ) 

This is a typical problem of linear programming~ Ordered 

structures, corresponding to discon~inuities in CaE/ax), 

result at x = 1/3 and 2/3, as 1n I, for ~ > -1/2. The struc-

ture at x = 2/3· disappears for ~ < -1/2; the one at x = 1/3 

for ¢ <-3/2: then the separation of all available particles 

o a phase of completely filled sites coexisting with a 

phase of empty sites becomes energetically favorable. 

The configurational entropy can be generalized from Kikuchi's 

equation \jfor the one-sublattice triangular lattice in a 

straightforward way and is written as 



( 2' 4) 

The grand potential can then be expressed 1n the notation of 

I as 

a6 w = Yll + Y~l + Yl~ + 2¢ ZJJl 

+-r {2 I L(z. 'k) 
ijk l] 

where the operator L, defined as 

L ( u) = u ( Jl,n u 1) ' 

results from us1ng Stirling's approximation in Eq, (2.4). 

( 2 0 5 ) 

( 2 ' 6 ) 

The eight trianf,le configuration probabilities zijk are taken 

as independent variables for the minimization of w, for given 

~' T and ¢, The normalization constraint of Eq. (2.la) lS 

introduced through a Lagrange multiplier. Kikuchi's ''Natural 

iteration 11 V{j method was used in the minimization procedure, 

which is described in the Appendix. 



3. PHASE DIAGRAMS 

We define the regions ( 3), _(Jc2) ,/ (~). and ( lll) in the 

(x,T) phase diagram as in I. For ¢ = O,~he particle~hole 

symmetry discussed in I holds and the (21) phase is the mirror 

image of the (12) Dhase about x = 1/2. This phase diagram is 

shown Figure 1. Comparing this with the Bragg-Williams 

phase diagram of I we notice two qualitative differences: 

(a) cluster~variation phase diagram shows a valley at 

x = 1/2 and (b) the disordered phase (3) continues to exist 

at T = 0. This topological evolution of the phase diagram 

as the approximation is improved parallels that for the 

fcc binary alloy~. 
For the first effect, we should notice that Wannier~ 

has solved exactly the zero-field Ising antiferromagnet, and 

obtained a disordered stable phase. Our order-disorder co-

existence region, which extends near x = 1/2 down to T = 0.25, 

should, with better approximations, continue to lower tern-

peratures and include the x = 1/2, T = 0 point. The triangle 

cluster approximation, though better than the "point 11 approxima-

tion, still seems to be unreliable around x = l/2 at low 

temperatures. The difference between the free energies of the 

different phases is very small in this region and the (lll) 

phase happens to have a higher entropy. 

The zero-temperature limit is usually avoided in cluster

variation calculations. Van Baal'\)/justif s this practice 

the argument that the approximations used in the descrip-

tion of the energy, which is the predominant part of the free 



energy at low temperatures, makes the model lose contact with 

reality in this limit. We find the zero~temperature behavior 

to be of theoretical interest, however, to confirm the ex~ 

istence of the ground~state structures that led to the division 

of the lattice into sublattices. Our results show that the 

concentrations x = l/3 and 2/3 at T = 0 are second~order 

tr>ansition points between the phase (lll) and the phases (12) 

and (21), respectively. For x < 1/3, the phases (3) and (12) 

have the same energy. The short~range correlations included in 

the cluster description allow for .the existence of a disordered 

phase with zero energy at low concentrations. The intervals 

where each phase predominates are determined by the zero~ 

temperature~limit entropies. The phases (3) and (12) coexist 

between x = 0.2280 and x = 0.2515. This interval corresponds 

to the first-order phase transition occuring in the lattice 

gas with infinite nearest-neighbor repulsion, treated by 

Burley y. 
In Figure 2, the phase diagram for¢ = -0.3 illustrates 

the asymmetry introduced by interactions between more than 

two particles. The region of existence of the (21) phase is 

significantly reduced, although the zero-temperature behavior 

remains the same as for¢ = 0. Below¢ = ~0.5, however, 

the (21) phase and the ordered structure at x = 2/3 disappear 

altogether as discussed in Section 2. Such a behavior is 

displayed in the phase diagram of Figure 3, for ¢ = ~0.6. 

As T ~ 0, the interval of coexistence between the phases 

(12) and (3) extends to the whole interval between x = l/3 

and x = 1. 



LJ.. THERMODYNAMIC FUNCTIONS 

We scuss the behavior the reduced entropy, 

s = S I ( Nk S ) , ( 4' 1) 

and reduced incremental ity, defined in I, and 

the latter to experimental res~lts for systems like 

The at fixed temperature as a function of the 

concentration shows minima at small T where order~d structures 

occur. The negative three-particle potential increases the 

values entropy for x > 1/2. These two effects are 

illustrated Figure 4, where results are presented for 

several temperatures at ¢ = -0.3, ch corresponds to an 

ionization of 90% at x = 1. 

In regards to the incremental capacity, our results 

also shmv ima at concentration~ where ordered structures 

are expected, as I. We are able to account also for 

the aks 

and 1/4. 

the experimental data\/ for LixTiS 2 at x = 

For any¢ and T < 0.2 a smooth maximum appears 

l/9 

near x = l/9. point x 1/4 is inside the small interval 

where a diverging incremental capacity indicates an order-

disorder trans ion. A smooth maximum near x = 6/7 can be 

ed ¢ = -0.3, T = 0.2. The negative three-partie 

eract produces high values for the incremental capacity 

the disordered phase for x > l/2. In Figure 5, results 



are presented for~ = -0.3 and several temperatures, together 

y,Jith Thompson's results'Z/for LixTiS 2 , where the mentioned 

aks are observed, and for Lix Ta 0 . 8 Ti 0 _2 s2 , where minima 

at x = 1/3 and 2/3 occur'\jl. 

A nearest-neighbor approximation ln a triangular lattice 

s can thus account semi~quantitatively for the experimental 

features in the incremental capacity for lithium intercala~ 

tion in some transition-metal dichalcogenides. We should 

mention that a cluster~variation calculation cannot predict 

the correct analytical behavior o£ thermodynamic functions 

at critical points, although their location in the phase 

diagram can be predicted with a satisfactory accuracy. 

5. CONCLUSIONS 

We have presented here order~disorder phase diagrams for 

the triangular lattice gas with nearest-neighbor pairwise 

repulsive and three-particle attractive interactions. The 

main effect of the three-particle parameter is to decrease 

the temperature range of existence of the ordered phase 

corresponding to the structure at x = 2/3, thus removing 

the particle-hole symmetry found in I. This is reflected 

ln the curves for the entropy and the incremental capacity 

as functions of the concentration. The qualitative picture 

given in I for the minima and ~axima of the incremental 

capacity is confirmed. Further~ore, we are able to reproduce 
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quantitatively the position of maxima and minima of the 

experimental data. 

We thus confirm the validity of the lattice gas model as 

a first approximation for the problem of ordering of Li+ ions 

in systems like LixTiS 2 . Better results can almost certainly 

achieved by introducing longer-range interactions. The 

improvements, however, will be limited mainly by the inaccurate 

description of the guest-host interaction and the electronic 

contributions due to the filling of the TiS 2 conduction band. 
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APPENDIX 

We describe here the "natural interation" scheme used 

to minimize Eq. (2.5), given v, T and¢. We define 

w0 ::: w + A ( 1 ~ I z .. k) , 
ijk :LJ 

where the Lagrange multiplier A was used to introduce the 

cons of Eq. (2.la). The equations 

lead to the superposition expression 

::: [(' )/ 2 ] y 1/2 X ~1/6 
exp A + ~ nijk - Eijk T ijk ijk 

where for the i-i-k triangle configuration we defined the 

number of particles per lattice site 

the energy in units of U per lattice site 

(A.l) 

(A.2) 

(A. 3) 

CA. u,) 

(A. 5) 



(where 6mn lS Kronecker's delta) and the quantities 

and 

y. 'k l] 

x. 'k l] 

Ya. B, YSy yya 
l] jk ki 

:::: xC: x~ xY 
l J k 

In Eq. (A.3) the triangle probabilities are expressed 

(A.7) 

as products of (a) the probabilities for the smaller clusters, 

(b) a Gibbs factor and (c) a normalization factor 'exp (A/2T). 

The Lagrange multiplier A can be identified with the minimized 

grand potential, through the relation 

(A.8) 

The normalization relation of Eq. (2.la) gives a cluster-

variation approximation for the gr~nd partition function Z 

as a sum over the triangle cluster, the Gibbs factor bein~ 

weighted by the configuration probabilities of pairs and points, 

in the form 

z112N :::: exp(-A/2T) :::: I exp[(lJnl'J'k- £: •• k)/2T] 
ijk l] 

1/2 -l/6 
xYijk Xijk (A.9) 

The natural iteration calculation proceeds in the follow-

ing steps: (a) initial values are chosen for the point and 
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the pair variables (e.g., x~ = 0.8, x~ = 0.5, xi= 0.2 for 

ordered phases, and x~ = x~ = xi = 0.5 for the disordered 

phase; y~~ = x~ x~ etc.); (b) a value of~ res~lts from 
lJ l J 

. (A.9); (c) corresponding values for the set of triangle 

clusters {zijk} are obtained from Eq. (A.3); (d) new values 

. { v} { vv'} for x. and y.. are derived through the summation rules 
l lJ 

Eq. (2.lb) and (2,lc); (e)' steps (b)-(d) are repeated 

until a convergence criterion is satisfied. 
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FIGURE CAPTIONS 

1 Phase diagram in the (x,T) plane for the triangular 
~~_y~;_~~~~<~~ 

tice in the triangle approximation with nearest~ 

neighbor repulsions only. 

the (x,T) plane for the t iangle 

tice gas with a three-particle parameter ¢ -0. 3. 

zontal lines are drawn forT = 0.1, 0.2 and 0.3 so that the 

behavior of the constant-temperature parameters of Figure 4 

can be compared with the phase diagram. 

Phase diagram in the (x,T) plane for the triangular 

lattice gas with a three-particle parameter ¢ = 0.6. 

Figure 4 
-1 -1 

Reduced entropy and molar entropy (in J. mol ' K ) 

as functions of concentration for a three-particle parameter 

¢ = -0.3 and several values of the reduced temperature T. Arrows 

indicate second-order transition points for T = 0.1. This Figure 

corresponds to the phase diagram of Figure 2. 

Reduced incremental capacity multiplied by the 

reduced temperature (T·8x/a~) and incremental capacity (in 

volts -l assuming T = 300K~ for¢= -0.3 and (a) T = 0.1, 

(b) T = 0.2, (c) T = 0.3, (d) T = 0.4 and the experimental 

results for (e) LixTiS 2 and (f) Lix Ta 0 • 8 Ti 0 • 2 s2 from 

Re nee 15. In (a) arrows indicate second-order transition 

po s. 
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